Bounds on the signed 2-independence number in graphs
نویسندگان
چکیده
منابع مشابه
Bounds on the signed 2-independence number in graphs
Let G be a finite and simple graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If ∑ x∈N [v] f(x) ≤ 1 for each v ∈ V (G), where N [v] is the closed neighborhood of v, then f is a signed 2independence function onG. The weight of a signed 2-independence function f is w(f) = ∑ v∈V (G) f(v). The maximum of weights w(f), taken over all signed 2-independence functions ...
متن کاملOn the signed (total) k-independence number in graphs
Let G be a graph. A function f : V (G) → {−1, 1} is a signed kindependence function if the sum of its function values over any closed neighborhood is at most k − 1, where k ≥ 2. The signed k-independence number of G is the maximum weight of a signed k-independence function of G. Similarly, the signed total k-independence number of G is the maximum weight of a signed total k-independence functio...
متن کاملLower bounds on the signed (total) $k$-domination number
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
متن کاملNew bounds on the signed total domination number of graphs
In this paper, we study the signed total domination number in graphs and present new sharp lower and upper bounds for this parameter. For example by making use of the classic theorem of Turán [8], we present a sharp lower bound on Kr+1-free graphs for r ≥ 2. Applying the concept of total limited packing we bound the signed total domination number of G with δ(G) ≥ 3 from above by n−2b 2ρo(G)+δ−3...
متن کاملUpper bounds for the 2-hued chromatic number of graphs in terms of the independence number
A 2-hued coloring of a graph G (also known as conditional (k, 2)-coloring and dynamic coloring) is a coloring such that for every vertex v ∈ V (G) of degree at least 2, the neighbors of v receive at least 2 colors. The smallest integer k such that G has a 2-hued coloring with k colors, is called the 2-hued chromatic number of G and denoted by χ2(G). In this paper, we will show that if G is a re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discussiones Mathematicae Graph Theory
سال: 2013
ISSN: 1234-3099,2083-5892
DOI: 10.7151/dmgt.1686